
SQL SQL –– An IntroductionAn Introduction

Using some basic SQL Using some basic SQL
statements to retrieve data from statements to retrieve data from statements to retrieve data from statements to retrieve data from

SQL databasesSQL databases

by David Smithby David Smith

Border Asset Management LtdBorder Asset Management Ltd

The last 18 months!The last 18 months!

RBS ACE Banking System

All client financial records and

dealing information held in Scotland

RBS ACE Banking System

All client financial records and

dealing information held in Guernsey

In-House SQL Database Server

All client KYC data and

‘copy’ of data held at RBS for

Fund Manager decision making

In-House Terminal Server

running Windows based

Fund Management application

Laptop

Workstation

SQL in actionSQL in action
Set of CSV files downloaded daily

3
rd
 party app pushes

CSV files into

temporary database

tables

User-defined SQL code

compares, inserts new and

updates existing static data

into SQL database

User-defined SQL code

‘attempts’ to match results

of deals with in-house

originating deal decisions

User-defined SQL code

used for complex Crystal

Reporting

User-defined SQL code

used for in-house Delphi

data maintenance

applications

MS SQL 2000 Query AnalyzerMS SQL 2000 Query Analyzer

SQL 2000 comes with a tool, called the Query Analyzer, which allows the developer to SQL 2000 comes with a tool, called the Query Analyzer, which allows the developer to

work with SQL databases and develop queries, tables and all manner of objects work with SQL databases and develop queries, tables and all manner of objects

associated with those SQL databases. When running QA, you are prompted for the associated with those SQL databases. When running QA, you are prompted for the

server you wish to connect to and how you will authenticate with that server, be it via your server you wish to connect to and how you will authenticate with that server, be it via your

security account within Windows or via SQL Server authentication itself.security account within Windows or via SQL Server authentication itself.

MS SQL 2000 Query AnalyzerMS SQL 2000 Query Analyzer

A typical MDI windows

application, QA offers an

Object Browser window,

multiple script writing

windows and an output pane.

It offers script syntax

checking facilities, drag-and-

drop from the object browser

to the scripting window to the scripting window

,object scripting and

amending and can display

estimated execution plans –

although the latter may well

have to be the subject of

another talk.

It also offers quick access to

the very detailed Help

system.

SELECT * FROM dbtableSELECT * FROM dbtable
SELECT ‘All columns (fields)’ FROM database table called ‘dbtable’

(and by default all records)

where ‘dbtable’ is the name of an existing database table/view.

Naming of objects in SQL follows the dot notation and is of the form:

server_name.database_name.object_owner.object_name

Typically for many of us, especially in the early days of developing SQL

expressions, we will be working with components that are attached to the

relevant server and database where the data we are requiring is located.

Equally we will have ownership of the relevant object and then we can just refer

to the object_name on its own.

So

SELECT * FROM myserver.pubs.dbo.employee becomes

SELECT * FROM employee

Remember though that this facility, to use the dot naming convention, allows

you to work with multiple objects located in different databases on different

servers!
Examples 01,02

SQL SELECT ClauseSQL SELECT Clause

The excellent SQL Help system defines the SELECT clause as:The excellent SQL Help system defines the SELECT clause as:

SELECT [ALL | DISTINCT]SELECT [ALL | DISTINCT]
[TOP [TOP nn [PERCENT] [WITH TIES]] [PERCENT] [WITH TIES]]
< select_list > < select_list >

< select_list > ::= < select_list > ::=

{{ * * {{ * *
| { | { table_nametable_name | | view_nameview_name | | table_alias table_alias }}.*.*
| | { { column_namecolumn_name | | expression expression | IDENTITYCOL | ROWGUIDCOL } | IDENTITYCOL | ROWGUIDCOL }

[[AS] [[AS] column_aliascolumn_alias]]
| | column_alias column_alias = = expression expression

}} [[,,......n n]]

This, however, may well seem complex so let’s look at a few examples to show This, however, may well seem complex so let’s look at a few examples to show
how easy it is!how easy it is!

SELECT fields FROM (vertical partitioning)SELECT fields FROM (vertical partitioning)

SELECT fieldname1, fieldname2 SELECT fieldname1, fieldname2 FROMFROM

SELECT fieldname1, fieldname2, * FROMSELECT fieldname1, fieldname2, * FROM

SELECT fieldname1 AS SomeBetterName, fieldname2 AS SELECT fieldname1 AS SomeBetterName, fieldname2 AS

SomeOtherName, * FROMSomeOtherName, * FROM

SELECT [my field] AS MyAliasName FROMSELECT [my field] AS MyAliasName FROM

SELECT fieldname1 AS [My Nice “Name”] FROMSELECT fieldname1 AS [My Nice “Name”] FROM

SELECT ‘DataSource_1’ AS DataSource, fieldname1, FALSE AS ‘Status’ SELECT ‘DataSource_1’ AS DataSource, fieldname1, FALSE AS ‘Status’

FROMFROM

Examples 03, 04, 05

SQL Functions in SELECT ClauseSQL Functions in SELECT Clause

SELECT CAST(fieldname1 AS VARCHAR(12)) AS MyAliasNameSELECT CAST(fieldname1 AS VARCHAR(12)) AS MyAliasName

SELECT CONVERT(VARCHAR(10), mydate, 103) AS MyAliasNameSELECT CONVERT(VARCHAR(10), mydate, 103) AS MyAliasName

SELECT DATEDIFF(d, orderdate, shipdate) AS OrderToShipDaysSELECT DATEDIFF(d, orderdate, shipdate) AS OrderToShipDays

SELECT DATEDIFF(wk, orderdate, shipdate) AS OrderToShipWeeksSELECT DATEDIFF(wk, orderdate, shipdate) AS OrderToShipWeeks

SELECT GETDATE() AS Today, fieldname1,SELECT GETDATE() AS Today, fieldname1,

Example 06

SELECT fields FROM table SELECT fields FROM table
WHERE condition (horizontal partitioning)WHERE condition (horizontal partitioning)

Although there are many ways to return just a subset of the source data, the Although there are many ways to return just a subset of the source data, the

WHERE clause is used most frequently.WHERE clause is used most frequently.

WHERE (condition)WHERE (condition)

WHERE True (tends to return ALL the records!)WHERE True (tends to return ALL the records!)

WHERE False (tends to return None!)WHERE False (tends to return None!)WHERE False (tends to return None!)WHERE False (tends to return None!)

WHERE (freight > 10.00)WHERE (freight > 10.00)

WHERE ((shipcity = ‘France’) AND (carrier = ‘UPS’))WHERE ((shipcity = ‘France’) AND (carrier = ‘UPS’))

WHERE ((manufacturer = ‘Dell’) OR (carrier LIKE ‘%Walsh Western%’))WHERE ((manufacturer = ‘Dell’) OR (carrier LIKE ‘%Walsh Western%’))

WHERE employeeID IN (5, 7,8)WHERE employeeID IN (5, 7,8)

WHERE NOT (employeeID IN (5,7,8)) WHERE NOT (employeeID IN (5,7,8))

WHERE (employeeID NOT IN (5,7,8))WHERE (employeeID NOT IN (5,7,8))

Example 07

ORDER BY clauseORDER BY clause
Often the result set from a query will be handled by some other application but Often the result set from a query will be handled by some other application but

in many situations you may still want to order the data in some way and we use in many situations you may still want to order the data in some way and we use

the ORDER BY clause for this.the ORDER BY clause for this.

The ORDER BY clause has to come after the WHERE or GROUP BY clauses The ORDER BY clause has to come after the WHERE or GROUP BY clauses

but before any HAVING (covered later) and has the formbut before any HAVING (covered later) and has the form

ORDER BY fieldname1, fieldname2ORDER BY fieldname1, fieldname2

with the default being the data is sorted in ascending order. This can be with the default being the data is sorted in ascending order. This can be

specified, for clarity, with the ASC parameter and sorting in reverse order can specified, for clarity, with the ASC parameter and sorting in reverse order can specified, for clarity, with the ASC parameter and sorting in reverse order can specified, for clarity, with the ASC parameter and sorting in reverse order can

be performed with the DESC parameter.be performed with the DESC parameter.

ORDER BY ORDER BY employeeIDemployeeID

ORDER BY ORDER BY employeeIDemployeeID ASC, ASC, TotalSalesValueTotalSalesValue DESCDESC

ORDER BY 1, 3 DESCORDER BY 1, 3 DESC is an alternative way of specifying sort order with the is an alternative way of specifying sort order with the

numbers referring to column positions in the result set. So this example would numbers referring to column positions in the result set. So this example would

sort by column 1 data (ascending) and column 3 data descending.sort by column 1 data (ascending) and column 3 data descending.

Example 08

Further Record/row FilteringFurther Record/row Filtering

There are other ways of filtering record/rows from the source data into the result set. The There are other ways of filtering record/rows from the source data into the result set. The
default option in the SELECT clause is in fact the ALL parameter.default option in the SELECT clause is in fact the ALL parameter.

SELECT ALL * FROM dbtableSELECT ALL * FROM dbtable

However, the TOP clause can be successfully used when just wanting a snapshot of the However, the TOP clause can be successfully used when just wanting a snapshot of the
type of data held in a large table, or when (more frequently) you want the top n values type of data held in a large table, or when (more frequently) you want the top n values
from a data source when ordered in a particular way. So TOP n (n records) and TOP n from a data source when ordered in a particular way. So TOP n (n records) and TOP n
PERCENT (n percent of the data source records) are both forms available to developers. PERCENT (n percent of the data source records) are both forms available to developers.
The additional WITH TIES parameter allows the query to place additional records/rows in The additional WITH TIES parameter allows the query to place additional records/rows in The additional WITH TIES parameter allows the query to place additional records/rows in The additional WITH TIES parameter allows the query to place additional records/rows in
the result set if the nthe result set if the nthth, n, nthth+1, etc records have matching values. +1, etc records have matching values.

SELECT TOP 10 customerid, ordervalue ORDER BY ordervalueSELECT TOP 10 customerid, ordervalue ORDER BY ordervalue

SELECT TOP 20 PERCENT WITH TIES employeeid, employee_sales SELECT TOP 20 PERCENT WITH TIES employeeid, employee_sales

ORDER BY employee_sales DESCORDER BY employee_sales DESC

Examples 09

Further Record/row Filtering contd.Further Record/row Filtering contd.

Another way of record/row filtering is by using the DISTINCT clause.Another way of record/row filtering is by using the DISTINCT clause.

SELECT DISTINCT * FROM SELECT DISTINCT * FROM

Naturally on a keyed table the above DISTINCT clause will have no effect, but Naturally on a keyed table the above DISTINCT clause will have no effect, but

when working with nonwhen working with non--keyed tables containing duplicate records OR when keyed tables containing duplicate records OR when

vertically partitioning the table even on a keyed table, the DISTINCT clause will vertically partitioning the table even on a keyed table, the DISTINCT clause will vertically partitioning the table even on a keyed table, the DISTINCT clause will vertically partitioning the table even on a keyed table, the DISTINCT clause will

retrieve only unique records/rows.retrieve only unique records/rows.

SELECT DISTINCT SELECT DISTINCT CustomerIDCustomerID, , EmployeeIDEmployeeID, , ShipViaShipVia, , ShipNameShipName FROMFROM

Example 09

Manipulating Result Set Column DataManipulating Result Set Column Data

Manipulation of the output columns can be done using the CASE function, two versions Manipulation of the output columns can be done using the CASE function, two versions

of which existof which exist

SIMPLE CASESIMPLE CASE

�� CASE CASE input_expression input_expression

WHEN WHEN when_expression when_expression THEN THEN result_expression result_expression

[...[...n n]]
[[

ELSE ELSE else_result_expression else_result_expression

]]

ENDEND

SEARCHED CASESEARCHED CASE

CASECASE
WHEN WHEN Boolean_expressionBoolean_expression THEN THEN result_expression result_expression

[...[...n n]]
[[

ELSE ELSE else_result_expression else_result_expression

]]

ENDEND

Example 09B

Using Aggregate FunctionsUsing Aggregate Functions

Using server based aggregate functions makes a lot of sense when relevant, as less data Using server based aggregate functions makes a lot of sense when relevant, as less data
gets pulled from server to client and less client application design and processing is gets pulled from server to client and less client application design and processing is
required.required.

Some of the aggregate functions are:Some of the aggregate functions are:

SUM, COUNT, AVG (these can all use the ALL or DISTINCT keyword)SUM, COUNT, AVG (these can all use the ALL or DISTINCT keyword)

MAX and MIN MAX and MIN

SELECT SUM (freight) AS SELECT SUM (freight) AS TotalFreightTotalFreight FROM ordersFROM orders

Naturally the WHERE operator can be used to limit what row values are summed such as Naturally the WHERE operator can be used to limit what row values are summed such as Naturally the WHERE operator can be used to limit what row values are summed such as Naturally the WHERE operator can be used to limit what row values are summed such as

SELECT SUM (freight) AS SELECT SUM (freight) AS TotalFreightTotalFreight FROM orders WHERE FROM orders WHERE employeeIDemployeeID = 5= 5

SELECT COUNT(*) AS SELECT COUNT(*) AS NumberOfRecordsNumberOfRecords FROM orders WHERE FROM orders WHERE employeeIDemployeeID = 5= 5

However, what you However, what you cannot docannot do without additional keywords is an expression of the formwithout additional keywords is an expression of the form

SELECT SELECT employeeIDemployeeID, SUM (freight) AS , SUM (freight) AS TotalFreightTotalFreight FROM ordersFROM orders

Example 10

Using Aggregate Functions with GROUP BYUsing Aggregate Functions with GROUP BY

To solve queries where you want to aggregate some column/field value for a different To solve queries where you want to aggregate some column/field value for a different

column/field value then you must use the GROUP BY clausecolumn/field value then you must use the GROUP BY clause

So the incorrect So the incorrect SELECT SELECT employeeIDemployeeID, SUM (freight) AS , SUM (freight) AS TotalFreightTotalFreight FROM ordersFROM orders

becomes becomes

SELECT SELECT employeeIDemployeeID, SUM (freight) AS , SUM (freight) AS Total_FreightTotal_Freight FROM orders FROM orders

GROUP BY GROUP BY employeeIDemployeeID

SELECT SELECT employeeIDemployeeID, MAX(, MAX(OrderDateOrderDate) AS) AS Last_Employee_Sale_DateLast_Employee_Sale_Date FROM orders FROM orders

GROUP BY GROUP BY employeeIDemployeeID

Every non aggregated field in the SELECT statement must be included in the GROUP Every non aggregated field in the SELECT statement must be included in the GROUP

BY clause. On occasions this is a nuisance and as long as the relevant field you want to BY clause. On occasions this is a nuisance and as long as the relevant field you want to

include in the SELECT statement is directly 1include in the SELECT statement is directly 1--1 linked with a field in the SELECT 1 linked with a field in the SELECT

statement then you can use expressions of the formstatement then you can use expressions of the form

SELECT SELECT CustomerIDCustomerID, , ShipNameShipName, MAX(, MAX(ShipAddressShipAddress) AS) AS ShipAddressAsStringShipAddressAsString, ,

SUM(freight) AS SUM(freight) AS TotalFreightCostsTotalFreightCosts FROM orders GROUP BY FROM orders GROUP BY CustomerIDCustomerID, ,

ShipNameShipName

Example 10

GROUP BY, ORDER BY & WHEREGROUP BY, ORDER BY & WHERE

Naturally we can use the ORDER BY clause with Aggregate functions and the GROUP BY clause to Naturally we can use the ORDER BY clause with Aggregate functions and the GROUP BY clause to
further control the result set.further control the result set.

SELECT SELECT SUM(freight) AS SUM(freight) AS TotalFreightCostsTotalFreightCosts, , CustomerIDCustomerID FROM ordersFROM orders

GROUP BY GROUP BY CustomerIDCustomerID

ORDER BY 1 DESCORDER BY 1 DESC

Notice the ORDER BY clause uses column data ‘after’ the SELECT command has executed and Notice the ORDER BY clause uses column data ‘after’ the SELECT command has executed and
therefore this can becometherefore this can become

SELECT SELECT SUM(freight) AS SUM(freight) AS TotalFreightCostsTotalFreightCosts, , CustomerIDCustomerID FROM ordersFROM orders

GROUP BY GROUP BY CustomerIDCustomerIDGROUP BY GROUP BY CustomerIDCustomerID

ORDER BY ORDER BY TotalFreightCostsTotalFreightCosts DESCDESC

We can add the WHERE clause to this to further enhance the query as inWe can add the WHERE clause to this to further enhance the query as in

SELECT SELECT SUM(freight) AS SUM(freight) AS TotalFreightCostsTotalFreightCosts, , CustomerIDCustomerID FROM ordersFROM orders

WHERE WHERE employeeIDemployeeID = 5= 5

GROUP BY GROUP BY CustomerIDCustomerID

ORDER BY ORDER BY TotalFreightCostsTotalFreightCosts DESCDESC

Note the order of these clauses Note the order of these clauses –– they cannot be entered in any other order.they cannot be entered in any other order.

Example 11

Aggregate functions & HAVINGAggregate functions & HAVING
When working with Aggregate functions, you often want to limit data appearing in the result When working with Aggregate functions, you often want to limit data appearing in the result
set based upon values of the relevant aggregate function output. In this case, the WHERE set based upon values of the relevant aggregate function output. In this case, the WHERE
clause cannot be in this context, and the HAVING clause is used instead.clause cannot be in this context, and the HAVING clause is used instead.

So the following will not workSo the following will not work

SELECT SELECT CustomerIDCustomerID, SUM(freight) AS , SUM(freight) AS TotalFreightCostsTotalFreightCosts FROM ordersFROM orders

WHERE WHERE SUM(freight) > 100SUM(freight) > 100

GROUP BY GROUP BY CustomerIDCustomerID

However, rewritten with the HAVING clause, the query now does what you want.However, rewritten with the HAVING clause, the query now does what you want.

SELECT SELECT CustomerIDCustomerID, SUM(freight) AS , SUM(freight) AS TotalFreightCostsTotalFreightCosts FROM ordersFROM orders

GROUP BY GROUP BY CustomerIDCustomerID

HAVING HAVING SUM(freight) > 100SUM(freight) > 100

Note the order of the clauses has now been changed with the HAVING function coming Note the order of the clauses has now been changed with the HAVING function coming
after the GROUP BY but before the ORDER BY. after the GROUP BY but before the ORDER BY. We can still use the WHERE clause to We can still use the WHERE clause to
filter records prior to the aggregate function being executed as infilter records prior to the aggregate function being executed as in

SELECT SELECT CustomerIDCustomerID, SUM(freight) AS , SUM(freight) AS TotalFreightCostsTotalFreightCosts FROM ordersFROM orders

WHERE WHERE employeeIDemployeeID IN (5, 6, 8) GROUP BY IN (5, 6, 8) GROUP BY CustomerIDCustomerID

HAVING HAVING SUM(freight) > SUM(freight) > 100100

ORDER BY 2ORDER BY 2
Example 11

Finding Duplicate RecordsFinding Duplicate Records
One useful trick enabled through aggregate functions is that of being able to find duplicate One useful trick enabled through aggregate functions is that of being able to find duplicate

records easily. To do this, we use the COUNT, GROUP BY and HAVING functions as records easily. To do this, we use the COUNT, GROUP BY and HAVING functions as

follows:follows:

SELECT field1, field2, SELECT field1, field2, fieldnfieldn… , COUNT(*) AS … , COUNT(*) AS Number_OfNumber_Of FROM tableFROM table

GROUP BY field1, field2, GROUP BY field1, field2, fieldnfieldn……

HAVING COUNT(*) > 1HAVING COUNT(*) > 1

So a couple of real examples would be:So a couple of real examples would be:

SELECT SELECT ProductIDProductID, , UnitPriceUnitPrice, COUNT(*) AS , COUNT(*) AS OrderNumbersOrderNumbers FROM [order details] FROM [order details] odod

GROUP BY GROUP BY ProductIDProductID, , UnitPriceUnitPrice

HAVING COUNT(*) > 1HAVING COUNT(*) > 1

Or an example of when we only want ‘single’ entries such as what suppliers only supply Or an example of when we only want ‘single’ entries such as what suppliers only supply

one product?one product?

SELECT SELECT SupplierIDSupplierID FROM productsFROM products

GROUP BY GROUP BY supplieridsupplierid

HAVING COUNT(*) = 1HAVING COUNT(*) = 1

Example 11

Reversing Normal Form Reversing Normal Form –– Using JOINSUsing JOINS
Oh to work with one table! However, as we all know, ‘most’ databases (and all the ones Oh to work with one table! However, as we all know, ‘most’ databases (and all the ones

we have written!) are ‘well designed’ and in their respective normal forms. As such, we we have written!) are ‘well designed’ and in their respective normal forms. As such, we

often require column/field data in our result set that is not contained from within a single often require column/field data in our result set that is not contained from within a single

table. When this happens, then we need to use the JOIN command.table. When this happens, then we need to use the JOIN command.

The JOIN command allows the developer to link two or more tables/views and to retrieve The JOIN command allows the developer to link two or more tables/views and to retrieve

data from them. The JOIN command can be set to link two or more relevant fields. The data from them. The JOIN command can be set to link two or more relevant fields. The

fields do NOT have to be of the same name, just the same data type; they don’t even fields do NOT have to be of the same name, just the same data type; they don’t even

have to be key fields. A simple example of a JOIN would be:have to be key fields. A simple example of a JOIN would be:

SELECT * FROM Orders SELECT * FROM Orders SELECT * FROM Orders SELECT * FROM Orders

JOIN [Order Details] ON orders.orderID = [Order Details].orderIDJOIN [Order Details] ON orders.orderID = [Order Details].orderID

This query, an INNER JOIN, takes all the records from the Orders table and for each one This query, an INNER JOIN, takes all the records from the Orders table and for each one

of them fetches each row in the Order Details table with the same orderID value. This of them fetches each row in the Order Details table with the same orderID value. This

query also outputs every field in both tables. query also outputs every field in both tables.

With long table names like this, and when you want to specify which particular field you With long table names like this, and when you want to specify which particular field you

want in the output set, it may be helpful to use table aliases such as in:want in the output set, it may be helpful to use table aliases such as in:

SELECT * FROM Orders oSELECT * FROM Orders o

JOIN [Order Details] od ON o.orderID = od.orderIDJOIN [Order Details] od ON o.orderID = od.orderID

Example 12

Joins continuedJoins continued

We can, of course, join more than two tables together such as in:We can, of course, join more than two tables together such as in:

SELECT SELECT o.orderID, o.CustomerID, o.orderID, o.CustomerID,

CONVERT(VARCHAR(10), o.OrderDate, 103) AS OrderDateAsString,CONVERT(VARCHAR(10), o.OrderDate, 103) AS OrderDateAsString,
od.Quantity, od.UnitPrice, p.ProductName FROM Orders o od.Quantity, od.UnitPrice, p.ProductName FROM Orders o

JOIN [Order Details] od ON o.orderID = od.orderID JOIN [Order Details] od ON o.orderID = od.orderID

JOIN Products p ON od.ProductID = p.ProductIDJOIN Products p ON od.ProductID = p.ProductID

Note there is no NEED to prefix the column name with the table name or alias as long as Note there is no NEED to prefix the column name with the table name or alias as long as
that column name is UNIQUE amongst all the tables column names. So as OrderDate, that column name is UNIQUE amongst all the tables column names. So as OrderDate,
Quantity and ProductName are unique, we can amend this to:Quantity and ProductName are unique, we can amend this to:Quantity and ProductName are unique, we can amend this to:Quantity and ProductName are unique, we can amend this to:

SELECT SELECT o.orderID, o.CustomerID, o.orderID, o.CustomerID,

CONVERT(VARCHAR(10), OrderDate, 103) AS OrderDateAsString,CONVERT(VARCHAR(10), OrderDate, 103) AS OrderDateAsString, Quantity, Quantity,
od.UnitPrice, ProductName FROM Orders o od.UnitPrice, ProductName FROM Orders o

JOIN [Order Details] od ON o.orderID = od.orderID JOIN [Order Details] od ON o.orderID = od.orderID

JOIN Products p ON od.ProductID = p.ProductIDJOIN Products p ON od.ProductID = p.ProductID

However, both Order Details and Products have a column called UnitPrice and hence we However, both Order Details and Products have a column called UnitPrice and hence we
have to specify which column (from which table) we require in the result set (or as part of have to specify which column (from which table) we require in the result set (or as part of
some other function or aggregation function).some other function or aggregation function).

Example 12

It is unimportant what order the joins are listed in, so long as the join type is correct and It is unimportant what order the joins are listed in, so long as the join type is correct and
that you do not refer to a table in a join predicate prior to specifying it. So both these that you do not refer to a table in a join predicate prior to specifying it. So both these
queries produce the same results:queries produce the same results:

FROM FROM Orders o Orders o

JOIN [Order Details] od ON o.orderID = od.orderID JOIN [Order Details] od ON o.orderID = od.orderID

RIGHT JOIN Products p ON od.ProductID = p.ProductIDRIGHT JOIN Products p ON od.ProductID = p.ProductID

FROM FROM [Order Details] od[Order Details] od

LEFT JOIN Products p ON od.ProductID = p.ProductIDLEFT JOIN Products p ON od.ProductID = p.ProductID

JOIN Orders o ON o.orderID = od.orderID JOIN Orders o ON o.orderID = od.orderID

Joins continuedJoins continued

JOIN Orders o ON o.orderID = od.orderID JOIN Orders o ON o.orderID = od.orderID

This query will not work however as the as the reference in the second JOIN predicate to This query will not work however as the as the reference in the second JOIN predicate to
a table p has not yet been defined.a table p has not yet been defined.

FROM FROM Orders o Orders o

JOIN [Order Details] od ON o.orderID = od.orderID JOIN [Order Details] od ON o.orderID = od.orderID

JOIN Suppliers s ON p.supplierID = s.supplierIDJOIN Suppliers s ON p.supplierID = s.supplierID

JOIN Customers c ON c.CustomerID = o.CustomerIDJOIN Customers c ON c.CustomerID = o.CustomerID

JOIN Products p ON od.ProductID = p.ProductIDJOIN Products p ON od.ProductID = p.ProductID

Example 12

As you will be aware, depending upon the way in which your data tables are structured, As you will be aware, depending upon the way in which your data tables are structured,

you may need to JOIN tables together in different ways:you may need to JOIN tables together in different ways:

INNER JOININNER JOIN In an inner join only those records that have a matching In an inner join only those records that have a matching

value in the relevant tables are returned.value in the relevant tables are returned.

OUTER JOINOUTER JOIN There are 3 types of OUTER JOINThere are 3 types of OUTER JOIN

LEFT OUTER JOINLEFT OUTER JOIN With this join all records from the ‘left’ hand table are With this join all records from the ‘left’ hand table are

returned with those matching records from the ‘right’ hand returned with those matching records from the ‘right’ hand

Join TypesJoin Types

table.table.

RIGHT OUTER JOINRIGHT OUTER JOIN With this join all records from the ‘right’ hand table are With this join all records from the ‘right’ hand table are

returned with those matching records from the ‘left’ hand returned with those matching records from the ‘left’ hand

table.table.

FULL OUTER JOINFULL OUTER JOIN With this join all records from the left hand table are With this join all records from the left hand table are

returned complete with all records from the right hand returned complete with all records from the right hand

table.table.

CROSS JOINCROSS JOIN This join, without any WHERE clause, returns the This join, without any WHERE clause, returns the

cartesiancartesian product of the two tables, meaning for each row product of the two tables, meaning for each row

in the left hand table all records are returned from the right in the left hand table all records are returned from the right

hand table. Two tables with 5 and 10 records respectively hand table. Two tables with 5 and 10 records respectively

will produce a CROSS JOIN with 50 rows.will produce a CROSS JOIN with 50 rows.

Joins Joins -- Where, Group By & Where, Group By & AggrAggr’ Functions’ Functions
Naturally we can combine our Join expressions with use of the WHERE clause, Naturally we can combine our Join expressions with use of the WHERE clause,
Aggregate functions, Group BY and HAVING to provide finer control over what populates Aggregate functions, Group BY and HAVING to provide finer control over what populates
the result set. So we can use a 3 component WHERE clause:the result set. So we can use a 3 component WHERE clause:

SELECT o.orderID, o.CustomerID, OrderDate, od.Quantity, SELECT o.orderID, o.CustomerID, OrderDate, od.Quantity,
od.UnitPrice, p.ProductName,c.CompanyName AS od.UnitPrice, p.ProductName,c.CompanyName AS
CustomerCompanyName, s.CompanyName AS CustomerCompanyName, s.CompanyName AS
SupplierCompanyNameSupplierCompanyName

FROM FROM Orders o Orders o

JOIN [Order Details] od ON o.orderID = od.orderID JOIN [Order Details] od ON o.orderID = od.orderID JOIN [Order Details] od ON o.orderID = od.orderID JOIN [Order Details] od ON o.orderID = od.orderID

JOIN Products p ON od.ProductID = p.ProductIDJOIN Products p ON od.ProductID = p.ProductID

JOIN Customers c ON c.CustomerID = o.CustomerIDJOIN Customers c ON c.CustomerID = o.CustomerID

JOIN Suppliers s ON p.supplierID = s.supplierIDJOIN Suppliers s ON p.supplierID = s.supplierID

WHEREWHERE

s.Country LIKE '%Germany%'s.Country LIKE '%Germany%'

AND p.Discontinued = 0AND p.Discontinued = 0

AND od.Discount <> 0.0AND od.Discount <> 0.0

Example 13

A JOIN statement, like almost many other statements in SQL, can not only refer to a A JOIN statement, like almost many other statements in SQL, can not only refer to a

table, a view, stored procedure or table returning function, but to any other SQL table, a view, stored procedure or table returning function, but to any other SQL

statement. This enables us to join one SQL statement to another such as in:statement. This enables us to join one SQL statement to another such as in:

SELECT SELECT e.firstnamee.firstname + ' ' + + ' ' + e.lastnamee.lastname AS AS EmployeeNameEmployeeName, SUM(, SUM(od.Quantityod.Quantity * * od.UnitPriceod.UnitPrice) AS) AS OrderValueOrderValue

FROM Employees e JOIN Orders o ON FROM Employees e JOIN Orders o ON o.EmployeeIDo.EmployeeID = = e.EmployeeIDe.EmployeeID

JOIN [Order Details] JOIN [Order Details] odod ON ON od.orderIDod.orderID = = o.orderIDo.orderID JOIN products p ON JOIN products p ON od.ProductIDod.ProductID = = p.ProductIDp.ProductID

JOINJOIN ----/now join to the next query using a table alias for it called 'q'/now join to the next query using a table alias for it called 'q'

((

SELECT SELECT s.Countrys.Country, , p.ProductNamep.ProductName, , p.ProductIDp.ProductID, SUM(, SUM(od.Quantityod.Quantity * * od.UnitPriceod.UnitPrice) AS) AS OrderValueOrderValue

Joins Joins –– Using Using Table/Statement Table/Statement AliasesAliases

FROM Orders o JOIN [Order Details] FROM Orders o JOIN [Order Details] odod ON ON o.orderIDo.orderID = = od.orderIDod.orderID

JOIN Products p ON JOIN Products p ON od.ProductIDod.ProductID = = p.ProductIDp.ProductID

JOIN Customers c ON JOIN Customers c ON c.CustomerIDc.CustomerID = = o.CustomerIDo.CustomerID

JOIN Suppliers s ON JOIN Suppliers s ON p.supplierIDp.supplierID = = s.supplierIDs.supplierID

WHERE WHERE p.Discontinuedp.Discontinued = 1= 1

GROUP BY GROUP BY s.Countrys.Country, , p.ProductNamep.ProductName, , p.ProductIDp.ProductID

) q) q ON ON q.ProductNameq.ProductName = = p.ProductNamep.ProductName

GROUP BY GROUP BY e.firstnamee.firstname + ' ' + + ' ' + e.lastnamee.lastname

ORDER BY ORDER BY OrderValueOrderValue DESCDESC

Example 13

We can write join statements in another way but whether this is as easy to ‘read’ later is We can write join statements in another way but whether this is as easy to ‘read’ later is

debatable.debatable.

SELECT SELECT o.orderIDo.orderID, , o.CustomerIDo.CustomerID, ,

CONVERT(VARCHAR(10), CONVERT(VARCHAR(10), o.OrderDateo.OrderDate, 103) AS , 103) AS OrderDateAsStringOrderDateAsString,,

od.Quantityod.Quantity, , od.UnitPriceod.UnitPrice, ,

p.ProductNamep.ProductName,,

c.CompanyNamec.CompanyName AS AS CustomerCompanyNameCustomerCompanyName,,

s.CompanyNames.CompanyName AS AS SupplierCompanyNameSupplierCompanyName

FROM FROM Orders o, [Order Details] Orders o, [Order Details] odod, Products , Products pp, Customers c, Suppliers s, Customers c, Suppliers s

Joins Joins –– Using A Different SyntaxUsing A Different Syntax

FROM FROM Orders o, [Order Details] Orders o, [Order Details] odod, Products , Products pp, Customers c, Suppliers s, Customers c, Suppliers s

WHERE WHERE o.orderIDo.orderID = = od.orderIDod.orderID

AND AND od.ProductIDod.ProductID = = p.ProductIDp.ProductID

AND AND c.CustomerIDc.CustomerID = = o.CustomerIDo.CustomerID

AND AND p.supplierIDp.supplierID = = s.supplierIDs.supplierID

AND AND s.Countrys.Country LIKE '%Germany%'LIKE '%Germany%'

AND AND p.Discontinuedp.Discontinued = 0= 0

AND AND od.Discountod.Discount <> 0.0<> 0.0

Using this syntax we can use operators such as *=, =*, != to represent LEFT OUTER Using this syntax we can use operators such as *=, =*, != to represent LEFT OUTER

JOIN, RIGHT OUTER JOIN and NOT EQUALJOIN, RIGHT OUTER JOIN and NOT EQUAL
Example 14

The UNION OperatorThe UNION Operator
The UNION operator allows us to combine the results of two or more SQL expressions The UNION operator allows us to combine the results of two or more SQL expressions

into a single result set. The only ‘rules’ for the UNION to work is that both expressions into a single result set. The only ‘rules’ for the UNION to work is that both expressions

have the same number of fields in each and each respective one is of the same data type have the same number of fields in each and each respective one is of the same data type

(i.e. you cannot UNION an Integer with a Date).(i.e. you cannot UNION an Integer with a Date).

SELECT 'Pubs Employee‘ AS Company, SELECT 'Pubs Employee‘ AS Company, emp_idemp_id AS AS employee_IDemployee_ID, ,

lnamelname AS AS last_namelast_name, , fnamefname AS AS first_namefirst_name, , pj.job_descpj.job_desc AS TitleAS Title

FROM pubs..employee FROM pubs..employee pepe JOIN pubs..jobs JOIN pubs..jobs pjpj ON ON pe.job_idpe.job_id = = pj.job_idpj.job_id

UNIONUNION

SELECT 'SELECT 'NorthwindsNorthwinds Employee', CAST(Employee', CAST(EmployeeIDEmployeeID AS VARCHAR(10)) AS AS VARCHAR(10)) AS emp_idemp_id, ,

LastNameLastName AS AS last_namelast_name, , firstnamefirstname, title, title

FROM FROM northwindnorthwind..employees..employees

Note that the result set column names are determined by the first half of the UNION, so Note that the result set column names are determined by the first half of the UNION, so

in the above example the first two columns in the result set will be called ‘Company’ and in the above example the first two columns in the result set will be called ‘Company’ and

‘‘employee_IDemployee_ID’; using the column alias in the second half of the UNION is in fact ’; using the column alias in the second half of the UNION is in fact

irrelevant.irrelevant.

Example 15

Naturally you can use further SELECT statements, using a table alias, to filter the result Naturally you can use further SELECT statements, using a table alias, to filter the result

of a UNION as in:of a UNION as in:

SELECT * FROMSELECT * FROM

((

SELECT 'Pubs Employee' AS Company, SELECT 'Pubs Employee' AS Company, emp_idemp_id AS AS employee_IDemployee_ID, ,

lnamelname AS AS last_namelast_name, , fnamefname AS AS first_namefirst_name, , pj.job_descpj.job_desc AS TitleAS Title

FROM pubs..employee FROM pubs..employee pepe JOIN pubs..jobs JOIN pubs..jobs pjpj ON ON pe.job_idpe.job_id = = pj.job_idpj.job_id

The UNION Operator & Table AliasesThe UNION Operator & Table Aliases

UNIONUNION

SELECT 'SELECT 'NorthwindsNorthwinds Employee', CAST(Employee', CAST(EmployeeIDEmployeeID AS VARCHAR(10)) AS AS VARCHAR(10)) AS emp_idemp_id, ,

LastNameLastName AS AS last_namelast_name, , firstnamefirstname, title, title

FROM FROM northwindnorthwind..employees..employees

)) tblAllCompaniestblAllCompanies ----/ / �������� this is the table aliasthis is the table alias

WHERE WHERE tblAllCompanies.TitletblAllCompanies.Title LIKE '%Sales%'LIKE '%Sales%'

ORDER BY TitleORDER BY Title

ViewsViews

Views are used widely by developers for many reasons. They are really just a set of SQL Views are used widely by developers for many reasons. They are really just a set of SQL

statements that produce a table like output. Their advantage over tables are:statements that produce a table like output. Their advantage over tables are:

1.1. ZeroZero--useruser--access security can be applied to the actual data tables, with users access security can be applied to the actual data tables, with users

working solely with VIEWS. This prevents users knowing anything about and working solely with VIEWS. This prevents users knowing anything about and being being

able to edit your data tables, helping protect your development investment. The able to edit your data tables, helping protect your development investment. The

definition of what the VIEW is will in these cases be encrypted.definition of what the VIEW is will in these cases be encrypted.

2.2. VIEWS can be updateable (otherwise the above to some extent wouldn’t work) VIEWS can be updateable (otherwise the above to some extent wouldn’t work)

although there is a limit to how many underlying tables can updated with a single although there is a limit to how many underlying tables can updated with a single

UPDATE statement.UPDATE statement.

3.3. VIEWS allows users access to ‘realVIEWS allows users access to ‘real--world’ type data rather than the data typically world’ type data rather than the data typically

found in well normalised data tables; this enables them to more easily work with found in well normalised data tables; this enables them to more easily work with

report generators etc.report generators etc.

4.4. VIEWS can be almost always be used in place of a table.VIEWS can be almost always be used in place of a table.

A disadvantage with a VIEW is that you cannot pass it a parameter. To do this you A disadvantage with a VIEW is that you cannot pass it a parameter. To do this you

should use UDFS that return tables OR Stored Procedures.should use UDFS that return tables OR Stored Procedures.

User Defined FunctionsUser Defined Functions
UDFsUDFs allow you to create functions that can be used in any SQL statement, VIEW or allow you to create functions that can be used in any SQL statement, VIEW or

Stored Procedure and can simplify coding. Routines that you would regularly require in a Stored Procedure and can simplify coding. Routines that you would regularly require in a

variety of circumstances can be turned into a UDF returning to the calling code either a variety of circumstances can be turned into a UDF returning to the calling code either a

scalar value or a table. The advantages of a UDF are:scalar value or a table. The advantages of a UDF are:

1.1. Write code once, use many times!Write code once, use many times!

2.2. Hide underlying table data by encrypting the UDF definition.Hide underlying table data by encrypting the UDF definition.

Stored ProceduresStored Procedures

Stored Procedures offer the same for execution code that Stored Procedures offer the same for execution code that UDFsUDFs offer for ‘informational’ offer for ‘informational’

code. Naturally code. Naturally SPsSPs can be used, and often are used, for returning data to the user but can be used, and often are used, for returning data to the user but

are frequently used for data manipulation. The advantages of are frequently used for data manipulation. The advantages of SPsSPs are similar to that for are similar to that for

UDFsUDFs..

I hope you have enjoyed this short introduction to I hope you have enjoyed this short introduction to

what I am spending more and more time with what I am spending more and more time with ––

and learning all the time. and learning all the time.

I hope that it was interesting and that, if you didn’t I hope that it was interesting and that, if you didn’t

know too much about SQL before, you have learnt know too much about SQL before, you have learnt

something, and that if you did, then either you had something, and that if you did, then either you had

SQL An Introduction SQL An Introduction –– The EndThe End

something, and that if you did, then either you had something, and that if you did, then either you had

a little revision or a chance for a snooze before tea a little revision or a chance for a snooze before tea

and biscuits!and biscuits!

Thank you for listeningThank you for listening

DavidDavid

