
Essentials of

Martin Parry
Developer Evangelist
Microsoft
Martin.Parry@microsoft.com

 Justification
 Common attack methods
 Fighting back

 System administrators do a lot
Password policy
Firewalls
Application deployment

 Things they can’t do: -
Ensure that allow ed traffic is all “good”
Test applications for vulnerability
Control the level of privilege that apps require

That picture w ith text that I can’t copy…

Attacker needs to understand only one security issue
Defender needs to secure all entry points
Attacker has unlimited time
Defender works with time and cost constraintsAttackers vs. Defenders

Developers and management think that security
does not add any business value
Addressing security issues just before a product is
released is very expensiveSecurity As an Afterthought

Do I need
security

…

Secure systems are more difficult to use
Complex and strong passwords are difficult to
remember
Users prefer simple passwordsSecurity vs. Usability

 Typically means copying input into a fixed-size
buffer, without checking the input size

 Buffers can be anywhere in memory, although
exploitability may differ

 There are a number of effective strategies to
avoid these attacks…

 … but you have to rem em ber to use them

Parameter 1

Parameter 2

Local Variable 3

Local Variable 2

Local Variable 1

Return Address

Bottom
of Stack

High
Memory

Low
Memory

Top of
Stack

 The Stack Frame
 What if one of the

locals is a buffer?
 Exploits include
DoS
Modified behaviour

char *s

int n

char buffer[100]

int userId

char userName[10]

Return Address

Bottom
of Stack

High
Memory

Low
Memory

Top of
Stack

 Parameter s points
to some input data

 Function copies that
data into buffer

 Most vulnerable language is C++
Also seen in VB6
Any language that permits copying data in memory

 Vulnerabilities occur through rushed code
Friday-night, developer in a hurry, it happens!

 Use the .NET application platform
JIT compilation checks for buffer overruns
Avoid “unsafe” code in C#

 C++, use the /GS switch
Spots stack misuse at runtime

 Windows DEP (data execution prevention)
Makes use of hardware/software page marking
M em ory pages can be m arked as “data”, m eaning no code

can be executed in them

 Code/Security Reviews

 Use of unchecked input in dynamic SQL
 An unsophisticated attack with potentially

devastating consequences
 All languages, all databases are vulnerable
 There are good techniques for avoiding SQL

injection

SQL Injection

 D on’t copy input straight into SQ L statem ents
 Parameterize all commands
Parameter values are not compiled

 Better yet, use stored procedures
With parameters
Can deny access to underlying tables

 Code/Security Reviews

 Web page input reflected directly into output
Query string or form parameters

 Particularly dangerous when output into an
HTML element the user might click on
Can feed in “onclick” script
Might forward form parameters to another site
Might forward cookie contents to another site

 Any web server that supports dynamic content is
susceptible

 HTMLEncode or URLEncode data before output
Any “special” characters are escaped
Still leaves some potential exploits

 Code/Security review
 D on’t echo input to output at all

 If you’re out to com prom ise a com ponent, you’ll
look for one with high privilege

 No specific attack mechanism, but look out for
this where a host process runs application code
IIS in-process applications

 Impersonation can be fragile
 Any compromise is potentially more serious if it

affects highly-privileged code

 Well known doctrine: -
Run with just enough privilege to get the job done,

and no more
 IIS5 – use medium or high isolation
 Windows Server 2003 – no user code runs as

SYSTEM by default
 Use LocalService and NetworkService accounts

for low-privileged “service” processes
 Code/Security review

Always check your input!

Perform Code/Security Reviews

 Expect all input to have come from a bad guy
 Expect all output to be going to a bad guy
Protect your secrets

 Use the Principle of Least Privilege
 D on’t “roll your ow n” security
Use tried-and-tested, industry-recognized standards

 Consider moving to .NET
Verification, Code-access security

 Expose only limited, well-documented interfaces
from your application

 Use only services that your app really needs
Slammer and CodeRed would not have happened if

certain services were off by default
ILoveYou (and others) would not have happened if

scripting was disabled by default

 Turn off everything else

 If your code does fail, make sure it fails securely

DWORD dwRet = IsAccessAllowed(…);
if (dwRet == ERROR_ACCESS_DENIED) {

// Security check failed.
// Inform user that access is denied

} else {
// Security check OK.

// Perform task…
}

What if IsAccessAllowed() returns
ERROR_NOT_ENOUGH_MEMORY?

 Do not:
Reveal information in error messages

Consume resources for lengthy periods after a failure

 Do:
Use exception-handling blocks to avoid propagating

errors back to the caller
Write suspicious failures to an event log

<customErrors mode="On"/>

 Risk Analysis
Evaluates risk of compromise throughout project

 Threat Modelling
Helps to enumerate and prioritise threats

 The Security Development Lifecycle

 Build a list of assets that require protection,
including:
Confidential data, such as customer databases
Web pages
System availability
Anything else that, if compromised, would prevent correct

operation of your application

 Identify what the application does
 Create an application architecture diagram
 Identify the technologies

NTFS Permissions
(Authentication)

File Authorization
URL Authorization

.NET Roles
(Authentication)

User-Defined Role
(Authentication)

SSL
(Privacy/Integrity)

Trust
Boundary

Alice
Mary
Bob IIS

Anonymous
Authentication

Forms
Authentication

Trust Boundary

ASPNET
(Process Identity)Microsoft

ASP.NET

Microsoft Windows
Authentication

Microsoft
S Q L S erver™

IPSec
(Private/Integrity)

 Break down the application
 Create a security profile

based on traditional areas
with security issues

 Examine interactions
between different
subsystems

 Use DFD or UML diagrams

Identify trust boundaries

Identify data flow

Identify entry points

Identify privileged code

Document security profile

 Assemble team
Identify roles
Who judges risk?
Who decides what an asset is?

 Identify threats
Network threats
Host threats
Application threats

Types of threats Examples

Spoofing Forging e-mail messages
Replaying authentication packets

Tampering Altering data during transmission
Changing data in files

Repudiation Deleting a critical file and denying it
Purchasing a product and denying it

Information disclosure Exposing information in error messages
Exposing code on Web sites

Denial of service Flooding a network with SYN packets
Flooding a network with forged ICMP packets

Elevation of privilege
Exploiting buffer overruns to gain system
privileges
Obtaining administrator privileges illegitimately

1.0 View payroll data (I)
1.1 Traffic is unprotected (AND)
1.2 Attacker views traffic

1.2.1 Sniff traffic with protocol analyzer
1.2.2 Listen to router traffic

1.2.2.1 Router is unpatched (AND)
1.2.2.2 Compromise router
1.2.2.3 Guess router password

Threat #1 (I)
View payroll data

1.1
Traffic is
unprotected

1.2
Attacker views
traffic

1.2.1
Sniff traffic with
protocol analyzer

1.2.2
Listen to router
traffic

1.2.2.1
Router is
unpatched

1.2.2.2
Compromise
router

1.2.2.3
Guess router
password

 Document threats by using a template

 Leave Risk blank (for now)

Threat description Injection of SQL commands

Threat target Data Access Component

Risk

Attack techniques Attacker appends SQL commands to user name,
which is used to form a SQL query

Countermeasures
Use a regular expression to validate the user
name, and use a stored procedure with
parameters to access the database

 Use formula:
Risk = Probability * Damage Potential

 Use DREAD to rate threats
Damage potential
Reproducibility
Exploitability
Affected users
Discoverability

Threat #1 (I)
View payroll data

1.1
Traffic is
unprotected

1.2
Attacker views
traffic

1.2.1
Sniff traffic with
protocol analyzer

1.2.2
Listen to router
traffic

1.2.2.1
Router is
unpatched

1.2.2.2
Compromise
router

1.2.2.3
Guess router
password

Damage potential
Affected users
-or-
Damage

Reproducibility
Exploitability
Discoverability
-or-
Chance

 Use threat modeling to help:
D eterm ine the m ost “insecure” portions of your application
Prioritize security push efforts
Prioritize ongoing code reviews
Determine the threat-mitigation techniques to employ
Determine data flow

 MSDN Security Developer Center
http://msdn.microsoft.com/security

 The Security Development Lifecycle
http://msdn.microsoft.com/security/default.aspx?pull

=/library/en-us/dnsecure/html/sdl.asp?_r=1
 Top 10 Security Tips Every Developer Must Know
MSDN Magazine September 2002

 Application Threat Modelling
http://msdn.microsoft.com/security/securecode/threa

tmodeling/acetm/

http://msdn.microsoft.com/security
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp?_r=1
http://msdn.microsoft.com/security/securecode/threatmodeling/acetm/
http://msdn.microsoft.com/security/securecode/threatmodeling/acetm/

Writing Secure Code
2nd Edition
Michael Howard & David LeBlanc
 Publisher: Microsoft Press
 ISBN: 0735617228

The Security Development
Lifecycle

Michael Howard & Steve Lipner
 Publisher: Microsoft Press
 ISBN: 0735622140

The .NET Developer's Guide The .NET Developer's Guide toto
Windows Windows SecuritySecurity

Keith BrownKeith Brown
•• Publisher:Publisher: Addison WesleyAddison Wesley

•• ISBN:ISBN: 03212283590321228359

Practical CryptographyPractical Cryptography
NielsNiels Ferguson & Bruce Ferguson & Bruce SchneierSchneier
•• Publisher:Publisher: John Wiley & Sons Inc.John Wiley & Sons Inc.

•• ISBNISBN: 0471223573 : 0471223573

© © 20020066 Microsoft Corporation. All rights reservedMicrosoft Corporation. All rights reserved..

